

PRODUCT INFORMATION

RPAC

Cat. No. ME046.1 (1 mg) Cat. No. ME046.2 (5 mg)

Rhodamine B-[(phenanthren-9-yl)-aminocarbonyl]benzyl ester

- Iron-insensitive control for the mitochondrial fluorescent iron indicator RPA
- Mitochondria specific
- Non-toxic

Product Information

RPAC is used as a iron-insensitive control for the structurally similar mitochondrial fluorescent iron indicator RPA ^{1, 3}. RPAC ², which consists of the same fluorophore and linker as RPA has no iron-chelating capacity but shows the same selective mitochondrial accumulation. Parallel incubation of cells loaded with RPA or RPAC showed similar fluorescence recordings.

Product Data

product name: RPAC

function: fluorescent, non iron chelating, "negative" control

chemical name: Rhodamine B-[(phenanthren-9-yl)amino-

carbonyl]benzyl ester

molecular formula: $C_{50}H_{46}N_3O_4Br$ molecular weight: 832 g/mol

absorption maximum: λ max (log ϵ) = 567 nm

emission maximum: 602 nm

stability: 4°C, stored dry and protected from light

appearance: purple solid

purity: > 98% (1H NMR, 500 MHz)

in vitro toxicity: non toxic

Considerations for Use

RPAC is used in the same manner as RPA 1 . 1-5 mM stock solutions of RPAC in DMSO can be prepared and aliquots should be kept at -20° C. When stored properly at -20° C, the frozen aliquots are stable and can be used for at least 2 - 3 months.

References

- 1. Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. F. Petrat et al. *Biochem. J.* (2002) 362, 137-147
- Cold-induced apoptosis of hepatocytes: mitochondrial permeability transition triggered by nonmitochondrial chelatable iron. U. Rauen et al. Free Radical Biology & Medicine, Vol. 35, No. 12, pp. 1664-1678, 2003
- 3. The chelatable iron pool in living cells: A methodically defined quantity. F. Petrat et al. Biol. Chem., Vol. 383, pp. 489-502, 2002
- 4. Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. U. Rauen et al. ChemBioChem 2007, 8, 341-352
- 5. Oxidative inactivation of mitochondrial Aconitase results in iron and H₂O₂-mediated neurotoxicity in rat primary mesencephalic cultures. David Cantu *et al.* PlosOne, September 2009, Vol 4, Issue 9, p 1-9

Last updated: 12/2020