

## PRODUCT INFORMATION

Cat. No. SQM001.1 (50µg)

# Monoclonal Antibody to O<sup>6</sup>-Ethyl-2-deoxyguanosine (ER 6)

- Detects a specific mutagenic DNA modification induced by several exogenous and endogenous carcinogens e.g. food, smoking, cancer therapeutics, environmental carcinogens, workplace carcinogens
- Molecular epidemiology of carcinogen exposure
- Pre- and intratherapeutic dosimetry of exposure to anticancer agents
- Basic research of molecular mechanisms of carcinogenesis
- Mutagenicity testing of substances



#### **Product Data**

Catalogue no: SQM001.1

Product name: ER 6, Monoclonal Antibody to O<sup>6</sup>-ethyl-2-deoxyguanosine

Product size: 50 µg

Tested with: human, mouse, rat

Clone: ER 6
Isotype: rat IgG2b
Formulation: lyophilized

Reconstitution and Store lyophilized product at -20°C until opened. After opening, restore with 0.5 ml

storage: PBS/NaN<sub>3</sub>/1% BSA to a final concentration 100 µg Mab/ml. After dilution, do not use for

more than one day. For extended storage after reconstitution we suggest aliquoting and

storage at -20°C

Immunogen: O<sup>6</sup>-ethyl-2-deoxyguanosine

Purification: The antibody was isolated from supernatant by Protein G affinity purification

Application tested: Competitive Radioimmunoassay

ELISA:  $0.1 - 0.5 \mu g/ml$  PBS containing 3% bovine serum albumin

Immuno-Slot-Blot-Assay Oligonucleotide Repair Assay Immunoaffinity/Quantitative PCR

Immunocytochemistry: 0.1 - 0.5  $\mu g/ml$  PBS containing 3% bovine serum albumin

### Specifity of Mab ER 6, measured by the competitive radioimmunoassay (RIA)

| Affinity constant for O <sup>6</sup> -Ethyl-2-deoxyguanosine: | 2.0 x 10 <sup>10</sup> (I/Mol) |
|---------------------------------------------------------------|--------------------------------|
| RIA-detection limit for:                                      | (pMoI)                         |
| O <sup>6</sup> -EtdGuo                                        | 0.04                           |
| O <sup>6</sup> -EtGuo                                         | 0.88                           |
| O <sup>6</sup> -EtGua                                         | 2.0                            |
| O <sup>6</sup> -EtdGMP                                        | 0.09                           |
| 7-EtdGuo                                                      | 840                            |
| O <sup>4</sup> -EtdThd                                        | 1080                           |
| O <sup>6</sup> -MedGuo                                        | 6.9                            |
| O <sup>6</sup> -BudGuo                                        | 3.3                            |
| DGuo                                                          | 1.5 x 10 <sup>5</sup>          |
| DAdo                                                          | 1.5 x 10 <sup>5</sup>          |
| Dlno                                                          | 1.5 x 10 <sup>5</sup>          |
| DPyr                                                          | 5.0 x 10 <sup>5</sup>          |
| DNA-Hydrolysate                                               | 1.0 x 10 <sup>5</sup>          |



#### References

- 1. Mientjes et al. Formation and persistence of O<sup>6</sup>-ethylguanine in genomic and transgene DNA in liver and brain of lacZ transgenic mice treated with N-ethyl-N-nitrosourea. Carcinogenesis (1996); 11, 2449-2454.
- 2. Bender et al. Binding and repair of O<sup>6</sup>-ethylguanine in double-stranded oligodeoxynucleotides by recombinant human O<sup>6</sup>-alkylguanine-DNA alkyltransferase do not exhibit significant dependence on sequence context. Nucleic Acids Research (1996); 11, 2087-2094.
- 3. Engelbergs et al. Fast repair of O<sup>6</sup>-ethylguanine, but not O<sup>6</sup>-methylguanine, in transcribed genes prevents mutation of H-ras in rat mammary tumorigenesis induced by ethylnitrosourea in place of methylnitrosourea. Proc. Natl. Acad. Sci. USA (1998); 95, 1635-1640.
- 4. Goto et al. Mutagenicities of N-nitrosodimethylamine and N-nitrosodiethylamine in Drosophila and their relationship to the levels of O-alkyl adducts in DNA. Mutation Research (1999); 425, 125-134.

Last updated: 12/2020